skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gürbüzbalaban, Mert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 3, 2026
  2. This paper considers the problem of understanding the exit time for trajectories of gradient-related first-order methods from saddle neighborhoods under some initial boundary conditions. Given the ‘flat’ geometry around saddle points, first-order methods can struggle to escape these regions in a fast manner due to the small magnitudes of gradients encountered. In particular, while it is known that gradient-related first-order methods escape strict-saddle neighborhoods, existing analytic techniques do not explicitly leverage the local geometry around saddle points in order to control behavior of gradient trajectories. It is in this context that this paper puts forth a rigorous geometric analysis of the gradient-descent method around strict-saddle neighborhoods using matrix perturbation theory. In doing so, it provides a key result that can be used to generate an approximate gradient trajectory for any given initial conditions. In addition, the analysis leads to a linear exit-time solution for gradient-descent method under certain necessary initial conditions, which explicitly bring out the dependence on problem dimension, conditioning of the saddle neighborhood, and more, for a class of strict-saddle functions. 
    more » « less
  3. Stochastic gradient Hamiltonian Monte Carlo (SGHMC) is a variant of stochastic gradients with momentum where a controlled and properly scaled Gaussian noise is added to the stochastic gradients to steer the iterates toward a global minimum. Many works report its empirical success in practice for solving stochastic nonconvex optimization problems; in particular, it has been observed to outperform overdamped Langevin Monte Carlo–based methods, such as stochastic gradient Langevin dynamics (SGLD), in many applications. Although the asymptotic global convergence properties of SGHMC are well known, its finite-time performance is not well understood. In this work, we study two variants of SGHMC based on two alternative discretizations of the underdamped Langevin diffusion. We provide finite-time performance bounds for the global convergence of both SGHMC variants for solving stochastic nonconvex optimization problems with explicit constants. Our results lead to nonasymptotic guarantees for both population and empirical risk minimization problems. For a fixed target accuracy level on a class of nonconvex problems, we obtain complexity bounds for SGHMC that can be tighter than those available for SGLD. 
    more » « less